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Abstract This minireview focuses on the impairment of
function in cardiac mitochondria in heart failure (HF). It is
generally accepted that chronic energy starvation leads to
cardiac mechanical dysfunction in HF. Mitochondria are the
primary ATP generator for the heart. Current evidence
suggests that the assembly of the electron transport chain
(ETC) into respirasomes provides structural support for
mitochondrial oxidative phosphorylation by facilitating
electron channeling and perhaps by preventing electron leak
and superoxide production. Defects have been purported to
occur in the individual ETC complexes or components of the
phosphorylation apparatus in HF, but these defects have not
been linked to impaired mitochondrial function. Moreover,
studies that reported decreased mitochondrial oxidative
phosphorylation in HF did not identify the site of the defect.
We propose a sequential mechanistic pathway in which the
decrease in functional respirasomes in HF is the primary
event causing decreased oxidative phosphorylation and
increased reactive oxygen species production, leading to a
progressive decrease in cardiac performance.
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Introduction

Heart failure (HF) is a multifactorial syndrome characterized by
mechanical dysfunction of the myocardium and by failure to
meet the perfusion requirement of the body. Both cardiac
contraction and relaxation have a continuous energy demand.
Decreased levels of high-energy phosphates are found in
cardiac muscle in advanced stages of HF (Beer et al. 2002;
Neubauer et al. 1997; Sanbe et al. 1995). HF changes all
components of cardiac energetics: substrate utilization, ATP
production, and ATP transfer to the cardiac contractile
apparatus (Neubauer 2007; Stanley et al. 2005). The metabolic
fuel shift in substrate preference in the failing heart from fatty
acid to glucose (Davila-Roman et al. 2002; Massie et al. 1995)
suggests that the main sources for the reducing equivalents,
NADH and FADH,, become glycolysis and glucose oxida-
tion. The progressive decrease in the amount of ATP in the
heart (Shen et al. 1999) linked with reduction in mitochondrial
respiration (Rosca et al. 2008; Sharov et al. 1998; Sharov et al.
2000) and mitochondrial structural abnormalities (Ide et al.
2001; Sabbah et al. 1992) indicates that the mitochondrial
ATP production also decreases in the failing heart. The
transfer of mitochondrial ATP via the creatine-kinase energy
shuttle to myofibrillar actomyosin ATPase also is decreased
(Neubauer et al. 1999). Consequently, the failing heart is an
energy-starved engine (Neubauer 2007) so that improvement
of myocardial energetics becomes a promising approach to the
treatment of HF. This minireview addresses the available data
that support the contribution of mitochondrial dysfunction to
the progression of HF.

Respirasomes as structural support for oxidative
phosphorylation in heart mitochondria

The conventional model for electron transport between the
four mitochondrial independent complexes connected by
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electron carriers that randomly diffuse within the inner
membrane (“fluid model”) (Hackenbrock et al. 1986) has
been modified. In the alternate “solid model” initially
proposed by Chance and Williams more than 50 years ago
(Chance and Williams. 1955) and expanded and amplified
by Schagger’s group (Schagger and Pfeiffer 2000), the ETC
complexes are assembled into high-molecular weight
supercomplexes. The supercomplex consisting of complex
I, dimeric complex III, and one copy of complex IV
(I,1LI,IV4) found in rodent (Wittig et al. 2006), dog (Rosca
et al. 2008), and bovine (Schagger and Pfeiffer. 2000) heart
mitochondria, as well as in plants (Krause et al. 2004) and
fungi (Boumans et al. 1998), also contains coenzyme Q and
cytochrome c, and functions as a cohesive respiratory unit
(respirasome) because it transports electrons from NADH
to reduce oxygen (Acin-Perez et al. 2008). Functional
complex II also is associated with the respirasome
I, I, II1,IV, which oxidizes both NADH and FADH, and
reduces oxygen to form water (Acin-Perez et al. 2008).

As expressed by the chemiosmotic theory, the chemical
energy of the electron transfer down the redox potential
gradient from NADH and FADH, through the ETC
components to oxygen is harnessed as an inner membrane
electrochemical gradient (Mitchell 1976)), which drives the
synthesis of ATP by ATP synthase. How does this
mitochondrial function benefit from the structural organi-
zation of the ETC into respirasomes?

On the basis of structural information obtained from the
three-dimensional map of the bovine heart [;1II,IV; super-
complex (Schafer et al. 2007), the individual complexes
physically interact in this assembly. Dimeric complex III is
associated with the inner membrane arm of complex I,
whereas monomeric complex IV is associated with both
complex III and the membrane arm of complex 1. The
electron carrier-binding sites of one complex are both in
proximity to and face the electron carrier-binding sites of
the subsequent complex. In this multienzyme assembly,
NADH dehydrogenase localized in the matrix arm of the L-
shaped complex I oxidizes NADH, with the two electrons
and two protons accepted by the flavin mononucleotide.
Electrons are further transferred individually via a series of
iron-sulfur centers to reduce coenzyme Q at a binding site
near the connection between the matrix and inner mem-
brane arms of complex I. Reduced coenzyme Q (ubiquinol)
then binds to an adjacent site in complex III and transfers
electrons to the Rieske iron-sulfur protein and cytochrome
b. The transfer of electrons through complex III is best
explained by the Q cycle, in which four protons are
translocated across the inner membrane for every two
electrons transferred from ubiquinol to cytochrome c; to
reduce cytochrome c. As the last step, cytochrome c
oxidase (COX) reduces oxygen to water upon oxidation
of cytochrome ¢ and translocation of protons through the
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inner membrane. The cytochrome ¢ binding site of COX
represented by the globular domain of COX subunits II faces
the cytochrome ¢ binding site in complex III (cytochrome c).
According to this model, the electron carriers have short
diffusion distances between complexes, supporting the con-
cept of channeled electron transfer decreasing electron leakage
and superoxide production (Vonck and Schafer. 2009).

Conversion of the electrochemical gradient created by
the ETC to high energy ATP is carried out by the F|Fy ATP
synthase (complex V). ATP synthase also joins components
of the phosphorylation apparatus (adenine nucleotide trans-
locase and phosphate transporter) to form supramolecular
structures called synthasomes (Chen et al. 2004). Associ-
ations of complex V with supercomplexes co-exist with
assemblies with individual ETC complexes (Acin-Perez et
al. 2008), but the functional significance of these associa-
tions has not been established.

More recently, a “plasticity model” for the organization
of respiratory chain was proposed that accommodates the
coexistence of individual complexes with supercomplexes,
whose composition varies according to the bioenergetic
demand (Acin-Perez et al. 2008). These observations
suggest that the organization of the mitochondrial inner
membrane creates a platform for the coordination of
electron transport with ATP synthesis.

The approach to heart mitochondria in HF
Activity of individual components of the respiratory chain

A large variety of mitochondrial defects has been described
in the ETC complexes and components of the phosphory-
lation apparatus in both humans and experimental models
of HF. Sparagna et al. reported a decrease in complex IV
activity in spontaneously hypertensive rats, an experimental
model of pressure overload HF (Sparagna et al. 2007).
Using the pacing-induced canine model of HF, Ide et al.
reported a decrease in complex I activity (Ide et al. 1999),
whereas Marin-Garcia et al. reported a severe decrease in
the activity of complex III (Marin-Garcia et al. 2001a, b;
Moe et al. 2004). Decreased activities of complexes III and
IV have been reported in human patients with congestive
HF (Buchwald et al. 1990; Jarreta et al. 2000). Alterations
in the components of the phosphorylation apparatus
characterized by decreased amount and activity of ATP
synthase were reported to occur in pigs with ischemic HF
induced by left circumflex coronary artery ligation (Liu et
al. 2001) as well as in dogs with pacing-induced HF
(Marin-Garcia et al. 2001a, b; Moe et al. 2004), dogs with
naturally occurring dilated cardiomyopathy (McCutcheon et
al. 1992), and human patients with dilated cardiomyopathy
(Unverferth et al. 1988). Dorner et al. reported a switch in
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the amount of adenine nucleotide translocase (ANT) protein
characterized by an increase in the ANT1 isoform and a
decrease in ANT2, associated with a decrease in the
nucleotide transport activity in patients with idiopathic
dilated cardiomyopathy (Dorner et al. 2006) as well as with
enteroviral myocarditis (Dorner et al. 2000).

However, a direct causal relationship between the
decreased activity of ETC complexes and HF has proven
elusive (Jarreta et al. 2000). In addition, the link between
the reported specific defects and the decrease in mitochon-
drial function has not been studied. There is an apparent
excess in the activity of the ETC complexes and phosphor-
ylation apparatus components relative to the oxidative
phosphorylation needs (Faustin et al. 2004; Rossignol et
al. 1999). The sites of control of respiration in normal heart
mitochondria are located at complex I in the ETC (Groen et
al. 1982) and at the adenine nucleotide translocase and
complex V in the phosphorylation apparatus (Gellerich et
al. 1983). Therefore, flux control analysis is necessary in
heart mitochondria from heart failure to link the ETC
defects with decreased oxidative phosphorylation in HF.

Integrative mitochondrial function

The integrated function of the ETC coupled to ATP
synthesis, membrane transport, dehydrogenase activities,
and the structural integrity of the mitochondria is assessed
by analysis of oxidative phosphorylation performed in
either saponin-permeabilized fibers or in freshly-isolated
mitochondria. Decreased state 3 respiratory rates (ADP-
dependent) were reported when oxygen consumption was
measured in the presence of glutamate + malate in saponin-
permeabilized cardiac fibers isolated from rat (Garnier et al.
2003; Sanbe et al. 1994), dog (Sharov et al. 1998) and
human (Sharov et al. 2000) hearts with dilated cardiomy-
opathy as well as pressure overload and ischemic HF
(Sanbe et al. 1993; Sharov et al. 2000). However, oxygen
consumption by the swine myocardium with pressure
overload congestive HF was unchanged (Gong et al.
2003). The decrease of the respiratory rates measured in
cardiac fibers may be attributed to either a decrease in
mitochondrial density or a decrease in mitochondrial
function. The decrease in mitochondrial density was ruled
out as a cause for the decrease in respiratory rates in dogs
with intracoronary-microembolization HF (Sharov et al.
1998). In contrast, Garnier et al reported a discrepancy
between the decreased citrate synthase activity and un-
changed mitochondrial DNA copy number as indicators of
cardiac mitochondrial content (Garnier et al. 2003).
Studies on oxidative phosphorylation of freshly-isolated
heart mitochondria in HF show that the two topologically
and biochemically distinct mitochondrial populations, sub-
sarcolemmal (SSM) and interfibrillar (IFM) mitochondria

(Palmer et al. 1977; Palmer et al. 1985) are selectively
affected by HF of differing etiology. Initial studies on
oxidative phosphorylation in freshly-isolated heart mito-
chondria were performed on SSM. Lindenmayer et al.
reported dramatic decreases in state 3 respiratory rates
during glutamate and succinate oxidation in heart SSM
isolated from guinea pigs with congestive HF induced by
stenosis of the ascending aorta (Lindenmayer et al. 1968).
A similar model of HF in rabbits was associated with only a
22% decrease in state 3 respiratory rates of heart mito-
chondria oxidizing either glutamate + malate or succinate
(Sordahl et al. 1973). However, the use of the protease,
nagarse, complemented by polytron homogenization means
that these authors isolated both heart SSM and IFM as a
single admixed fraction. These data showing a milder
decrease in state 3 respiratory rates compared with the
previous study are based on a mixture of the two types of
heart mitochondria populations differently affected by HF, a
circumstance that would partially mask the severity of the
defect. Of interest, density gradient analysis of the isolated
mitochondria revealed a greater heterogeneity in mitochon-
drial size in HF compared to the control, with two
morphologically distinct mitochondrial populations emerg-
ing in the congestive HF stage. Biochemical studies of
these two individual peaks have not been done. The control
of oxygen consumption by phosphorylation (“coupling”) is
lost in pressure overload congestive HF as indicated by the
decreased respiratory control ratio (state 3 rate/state 4 rate
(ADP-independent)) (Lindenmayer et al. 1968; Sordahl et
al. 1973) with little or no change in the efficiency of
oxidative phosphorylation, as shown by normal ADP/O
ratio (Lindenmayer et al. 1968; Sordahl et al. 1973). The
specific site of the mitochondrial defect was not identified
in these studies. The analysis of mitochondrial oxidative
phosphorylation was performed with a limited number of
substrates, and was not supplemented by the measurement
of the activities of the individual ETC complexes.

}
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Fig. 1 The sequence of mitochondrial changes in heart failure
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Dystrophic cardiomyopathy in hamsters also was reported
to be associated with decreased oxidation of glutamate and
succinate by heart mitochondria (Lindenmayer et al. 1970),
whereas abnormalities in oxidative phosphorylation were
not detected in other studies of the same pathological
condition (Wrogemann et al. 1972). These disparate
findings were reconciled when the two metabolically
distinct populations of mitochondria in the hamster heart
were separately described microscopically and biochemi-
cally (Hoppel et al. 1982). A decrease in respiratory state 3
rates with complex I or II substrates was present only in
IFM. The activity of enzymes involved in the generation of
reducing equivalents to the ETC, as well as the activities of
ETC complexes and the amount of cytochromes, was
normal. The decrease in state 3 respiratory rates was
reversed by addition of an uncoupler, indicating that the
defect lay in the phosphorylation apparatus. The control of
oxygen consumption by phosphorylation (“coupling”) as
well as the efficiency of oxidative phosphorylation was
preserved. The defect in IFM was progressive and
paralleled the degree of peripheral congestion. In this study,
the assay of oxidative phosphorylation on freshly-isolated
intact mitochondria was the only test able to localize the
defect.

Respirasomes and oxidative phosphorylation in HF

In a follow-up to the work of Sharov et al. on oxidative
phosphorylation in saponin-permeabilized cardiac fibers
(Sharov et al. 1998), we performed a comprehensive study
of respiratory properties of the two populations of heart
mitochondria (Rosca et al. 2008) in the canine model of
intracoronary microembolization-induced HF of moderate
severity. Both populations of heart mitochondria were
equally affected in this model of HF. We found a dramatic
decrease in the ADP-stimulated respiration that was not
relieved by an uncoupler, indicating that the defect in
oxidative phosphorylation is localized in the ETC. The
decrease in ADP-stimulated respiration with substrates that
donate electrons to complexes I, II, III, and IV suggests a
defect localized in cytochrome ¢ oxidase (COX). However,
neither COX activity nor the amount of the substrate
cytochrome ¢ were altered in HF. The amount of I;II[,IV;
respirasomes was decreased in both populations of heart
mitochondria. We concluded that the decrease in oxidative
phosphorylation of heart mitochondria can be explained by
the decrease in the amount of functional respirasomes.
Also, the decrease in succinate oxidation in HF with
unchanged complex II activity suggests that the electron
flow from complex II supplies the complex III incorporated
into [III,IV; respirasomes rather than the un-incorporated
complex III.
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Mitochondria in HF: a matter of assembly

Based on our observations, we propose a sequential
mechanistic pathway by which mitochondrial alterations
contribute to the progression of HF (Fig. 1). The decrease
in functional respirasomes in HF is the primary event
causing the decrease in oxidative phosphorylation coupled
with an increase in electron leakage and superoxide
generation in complexes I and III that are independent of
respirasomes. Complex I-generated superoxide is dismu-
tated by matrix manganese superoxide dismutase (MnSOD)
to diffusible hydrogen peroxide, which damages adjacent
mitochondrial inner membrane proteins including subunits
of the ETC complexes. These oxidative alterations cause
decreased activity of ETC complexes reported by others in
severe HF, potentially decrease oxidative phosphorylation,
and finally lead to the degradation of the oxidized
complexes. Complex IlI-generated superoxide that exceeds
the dismutation capacity of the intermembrane space Cu-Zn
SOD, exits the mitochondria through the outer membrane
voltage-dependent anion channels and is dismutated to
hydrogen peroxide within the cytosol. The oxidative
modifications of cytosolic myofibrillar proteins lead to the
progressive decrease in their contractile performance and
signal the transition to irreversible heart damage (Fig. 1).
This scenario is supported by the observation that the
increased oxidative stress in mice with MnSOD deficiency
targeted to the heart (Nojiri et al. 2006) causes decreased
activity of mitochondrial ETC complexes and progressive
dilated cardiomyopathy.
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